
Serum Neutralizing Activity of mRNA-1273 against SARS-CoV-2
Variants

Angela Choi,a Matthew Koch,a Kai Wu,a Groves Dixon,a Judy Oestreicher,a Holly Legault,a Guillaume B. E. Stewart-Jones,a

Tonya Colpitts,a Rolando Pajon,a Hamilton Bennett,a Andrea Carfi,a Darin K. Edwardsa

aModerna, Inc., Cambridge, Massachusetts, USA

Angela Choi, Matthew Koch, and Kai Wu contributed equally to this study. Author order was determined based on the amount of time and effort for conceptualization,

data collection, and analysis/interpretation of data.

ABSTRACT The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-
CoV-2) variants has led to growing concerns over increased transmissibility and the abil-
ity of some variants to partially escape immunity. Sera from participants immunized on
a prime-boost schedule with the mRNA-1273 COVID-19 vaccine were tested for neutral-
izing activity against several SARS-CoV-2 variants, including variants of concern (VOCs)
and variants of interest (VOIs), compared to neutralization of the wild-type SARS-CoV-2
virus (designated D614G). Results showed minimal, statistically nonsignificant effects on
neutralization titers against the B.1.1.7 (Alpha) variant (1.2-fold reduction compared with
D614G); other VOCs, such as B.1.351 (Beta, including B.1.351-v1, B.1.351-v2, and B.1.351-
v3), P.1 (Gamma), and B.1.617.2 (Delta), showed significantly decreased neutralization
titers ranging from 2.1-fold to 8.4-fold reductions compared with D614G, although all
remained susceptible to mRNA-1273-elicited serum neutralization.

IMPORTANCE In light of multiple variants of SARS-CoV-2 that have been documented
globally during the COVID-19 pandemic, it remains important to continually assess the
ability of currently available vaccines to confer protection against newly emerging var-
iants. Data presented herein indicate that immunization with the mRNA-1273 COVID-19
vaccine produces neutralizing antibodies against key emerging variants tested, including
variants of concern and variants of interest. While the serum neutralization elicited by
mRNA-1273 against most variants tested was reduced compared with that against the
wild-type virus, the level of neutralization is still expected to be protective. Such data
are crucial to inform ongoing and future vaccination strategies to combat COVID-19.
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As the coronavirus disease 2019 (COVID-19) pandemic continues to escalate in vari-
ous parts of the world, several severe acute respiratory syndrome coronavirus 2

(SARS-CoV-2) variants of interest (VOIs) and variants of concern (VOCs) have emerged,
including in the United States (B.1.526, Iota; B.1.427/B.1.429), United Kingdom (B.1.1.7,
Alpha), Brazil (P.1, Gamma), India (B.1.617.1, Kappa; B.1.617.2, Delta), South Africa
(B.1.351, Beta), Uganda (A.23.1), Nigeria (B.1.525, Eta), Peru (C.37, Lambda), Colombia
(B.1.621, Mu), and Angola (A.VOI.V2) (1). There is growing concern over these variants
based on increased transmissibility and the ability of some variants to partially escape
both natural and vaccine-induced immunity. Notably, the B.1.617.2 lineage has been
classified as a VOC by the World Health Organization due to evidence of an increased
rate of transmission, reduced effectiveness of monoclonal antibody treatment, and
reduced susceptibility to neutralizing antibodies (1).

We previously reported that mRNA-1273, a lipid nanoparticle-encapsulated mRNA-
based vaccine encoding the spike glycoprotein of the SARS-CoV-2 Wuhan-Hu-1 isolate,
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induced high neutralizing-antibody titers in phase 1 trial participants (2) and was
highly effective in preventing symptomatic and severe COVID-19 (3, 4). Some VOCs or
VOIs, including B.1.351 and P.1, reduced neutralizing-antibody levels in a pseudovirus-
based model (5). Importantly, however, all variants remained susceptible to mRNA-
1273 vaccine-elicited serum neutralization (5). Here, we provide an update on the neu-
tralization activity of vaccine sera against several newly emerged variants, including
the Delta variant, B.1.617.2.

RESULTS

We assessed neutralization activity of sera against D614G pseudovirus (predominant
variant in 2020), B.1.1.7, B.1.1.71E484K, B.1.351-v1, B.1.351-v2, B.1.351-v3, P.1, B.1.617.2-v1,
B.1.617.2-v2, B.1.525, B.1.526, B.1.617.1-v1, B.1.617.1-v2, C.37-v1, C.37-v2, B.1.427/B.1.429,
B.1.621, A.23.1-v1, A.23.1-v2, and A.VOI.V2 (Table 1). Sera from the phase 1 mRNA-1273
clinical trial (8 participants, 1 week following dose 2) were evaluated against each variant
(2). Results showed minimal, statistically nonsignificant effects on neutralization titers
against B.1.1.7 and A.23.1-v1 compared to D614G (P = 0.64 and 0.46, respectively) (Fig. 1).
In contrast, all other variants examined showed significantly decreased neutralization titers
compared with D614G (P , 0.01) (Fig. 1), although all remained susceptible to mRNA-
1273-elicited serum neutralization. Reductions in neutralization titers for these variants
ranged from a factor of 2.1 to 8.4 compared with that for D614G (Fig. 1A). Across the 3 ver-
sions of the B.1.351 variant tested, 6.9-fold to 8.4-fold reductions in neutralization were
observed compared with that for D614G (Fig. 1A). Among all variants tested, the greatest
effect on neutralization was observed for A.VOI.V2 and B.1.351-v3 (8.1-fold and 8.4-fold
reductions compared with activity against D614G, respectively). More modest 2.1- to 3.4-
fold reductions were measured for P.1, B.1.617.2-v1, B.1.617.2-v2, B.1.526, B.1.617.1-v1,
B.1.617.1-v2, C.37-v1, C.37-v2, and A.23.1-v2. Intermediate 4.2- and 5.0-fold reductions
were seen for B.1.525 and B.1.621, respectively. mRNA-1273-elicited neutralization titers
against B.1.1.7, B.1.1.71E484K, B.1.427/B.1.429, P.1, and B.1.351-v1 observed herein
corroborated previous findings (5).

TABLE 1 Spike mutations in SARS-CoV-2 variants evaluated in this study

Variant name WHO nomenclature Location variant first identified Amino acid change(s) in spike
D614G Predominant global variant D614G
B.1.1.7 Alpha United Kingdom DH69, DV70, DY144, N501Y, A570D, D614G, P681H, T716I, S982A, D1118H
B.1.1.71E484K Alpha United Kingdom DH69, DV70, DY144, E484K, N501Y, A570D, D614G, P681H, T716I, S982A,

D1118H
B.1.351-v1 Beta South Africa L18F, D80A, D215G, DL242, DA243, DL244, R246I, K417N, E484K, N501Y,

D614G, A701V
B.1.351-v2 Beta South Africa L18F, D80A, D215G, DL242, DA243, DL244, K417N, E484K, N501Y, D614G,

A701V
B.1.351-v3 Beta South Africa D80A, D215G, DL242, DA243, DL244, K417N, E484K, N501Y, D614G, A701V
P.1 Gamma Brazil L18F, T20N, P26S, D138Y, R190S, K417T, E484K, N501Y, D614G, H655Y,

T1027I, V1176F
B.1.617.2-v1 Delta India T19R, G142D, E156G, DF157, DR158, L452R, T478K, D614G, P681R, D950N
B.1.617.2-v2 Delta India T19R, T95I, G142D, E156G, DF157, DR158, L452R, T478K, D614G, P681R,

D950N
B.1.525 Eta Nigeria Q52R, A67V, DH69, DV70, DY144, E484K, D614G, Q677H, F888L
B.1.526 Iota United States L5F, T95I, D253G, E484K, D614G, A701V
B.1.617.1-v1 Kappa India T95I, G142D, E154K, L452R, E484Q, D614G, P681R, Q1071H
B.1.617.1-v2 Kappa India G142D, E154K, L452R, E484Q, D614G, P681R, Q1071H, H1101D
C.37-v1 Lambda Peru G75V, T76I, D246-252, D253N, L452Q, F490S, D614G, T859N
C.37-v2 Lambda Peru T63I, D64-76, D246-252, D253N, L452Q, E471Q, F490S, D614G, T859N
B.1.427/B.1.429 United States S13I, W152C, L452R, D614G
B.1.621 Mu Colombia T95I, Y144T, Y145S, ins146N, R346K, E484K, N501Y, D614G, P681H, D950N
A.23.1-v1 Uganda F157L, V367F, Q613H, P681R
A.23.1-v2 Uganda R102I, F157L, V367F, E484K, Q613H, P681R
A.VOI.V2 Angola D80Y, DY144, DI210, D215G, DR246, DS247, DY248, L249M, W258L, R346K,

T478R, E484K, H655Y, P681H, Q957H
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DISCUSSION

Among VOCs tested, serum-elicited neutralization of the B.1.1.7 (Alpha) variant was
comparable to that of D614G; a range of significantly reduced neutralization titers com-
pared to D614G were observed for other VOCs, including the B.1.351 (Beta), P.1 (Gamma),
and B.1.617.2 (Delta) variants, with reductions ranging from 2.1-fold to 8.4-fold. Results pre-
sented here are generally consistent with previous studies examining neutralization activ-
ity of mRNA-1273–induced immune sera against VOIs/VOCs (reviewed in reference 6), with
similar overall trends using both live-virus and pseudovirus neutralization assays (6, 7).
Similar trends in neutralizing activity of VOIs/VOCs by sera from individuals immunized
with BNT162b2 were also observed (6, 8–10). A limitation of this study is that differential
variant spike incorporation into the various pseudoviruses might impact neutralization
results. Nevertheless, these data emphasize the need to continually assess the ability of
mRNA-1273 to confer protection against prevalent and emergent VOIs/VOCs. Such preclin-
ical analyses in conjunction with epidemiological monitoring of the incidence and spread
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FIG 1 Neutralization of SARS-CoV-2 pseudoviruses in serum samples. Serum samples were obtained from participants in the mRNA-1273 vaccine phase 1
trial on day 36 (7 days after dose 2). A recombinant vesicular stomatitis virus–based pseudovirus neutralization assay was used to measure neutralization.
The pseudoviruses tested incorporated D614G or the spike substitutions present in B.1.1.7 (Alpha), B.1.1.71E484K (Alpha), B.1.351-v1 (Beta), B.1.351-v2
(Beta), B.1.351-v3 (Beta), P.1 (Gamma), B.1.617.2-v1 (Delta), B.1.617.2-v2 (Delta), B.1.525 (Eta), B.1.526 (Iota), B.1.617.1-v1 (Kappa), B.1.617.1-v2 (Kappa), C.37-
v1 (Lambda), C.37-v2 (Lambda), B.1.427/B.1.429, B.1.621 (Mu), A.23.1-v1, A.23.1-v2, and A.VOI.V2 (Table 1). The reciprocal neutralizing titers on the
pseudovirus neutralization assay at a 50% inhibitory dilution (ID50) are shown. In panel A, boxes and horizontal bars denote the interquartile range and
the geometric mean titer (GMT), respectively. Whisker end points are equal to the maximum and minimum values below or above the median at 1.5 times
the interquartile range (IQR). The GMT fold change over D614G for each variant is shown. In panel B, the colored lines connect the D614G and variant
neutralization titers in matched samples. A two-tailed Wilcoxon matched-pairs signed-rank test was performed (**, P , 0.01). In both panels, the dots
represent results from individual serum samples, and the dotted line represents the lower limit of quantification for titers at 20 ID50. Data for B.1.1.7
(Alpha), B.1.1.71E484K (Alpha), P.1 (Gamma), and B.1.427/B.1.429 were published previously (5). NAb, neutralizing antibody.
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of VOCs directly inform strategies around vaccines targeting SARS-CoV-2 variants. As new
variants emerge, including those that lead to greater vaccine breakthrough cases, similar
analyses could be designed to test vaccine-induced immunity against variants in either
animal or clinical studies. Such data are crucial to inform necessary modifications to
COVID-19 mRNA vaccines going forward, which may help to mitigate the ongoing spread
of SARS-CoV-2 and the emergence of new variants.

MATERIALS ANDMETHODS
Clinical trial. Healthy adult participants (n = 8; age [mean 6 standard deviation], 34.8 6 9.7 years;

male, 37.5%) were immunized with mRNA-1273 (100mg) on a prime-boost schedule, and serum was col-
lected 7 days after the booster (day 36). Study protocols and results have been reported previously (2).

Recombinant VSV-based pseudovirus assay. Codon-optimized full-length spike (S) protein of the
original Wuhan-Hu-1 isolate with D614G mutation (D614G) was cloned into a pCAGGS vector. This
codon-optimized D614G vector was used as a template for site-directed mutagenesis to incorporate the
S variants, listed in Table 1. To make SARS-CoV-2 full-length S-pseudotyped recombinant vesicular sto-
matitis virus DG (VSVDG)-firefly luciferase virus, BHK-21/WI-2 cells (Kerafast) were transfected with the S
expression plasmid and subsequently infected with VSVDG-firefly luciferase as previously described (11).
For the neutralization assay, serially diluted serum samples were mixed with pseudovirus and incubated
at 37°C for 45 min. The virus-serum mix was subsequently used to infect A549-hACE2-TMPRSS2 cells (12)
for 18 h at 37°C before addition of ONE-Glo reagent (Promega) for measurement of the luciferase signal
by relative luminescence units (RLUs). The percentage of neutralization was calculated based on the
RLUs of the virus-only control and subsequently analyzed using the four-parameter logistic curve in
Prism v.8 (GraphPad Software, Inc.).

Statistical analysis. A two-sided Wilcoxon matched-pairs signed-rank test was used to compare the
same patients against different viruses. Statistical analyses were performed (Prism v.8). Geometric mean
titers, lower limit of quantification, and fold change relative to D614G were included.
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